

Syllabus

> Applications in finding the area under simple curves, especially lines, parabolas; area of circles/ parabolas/ellipses (in standard form only). (the region should be clearly identifiable).

STAND ALONE MCQs

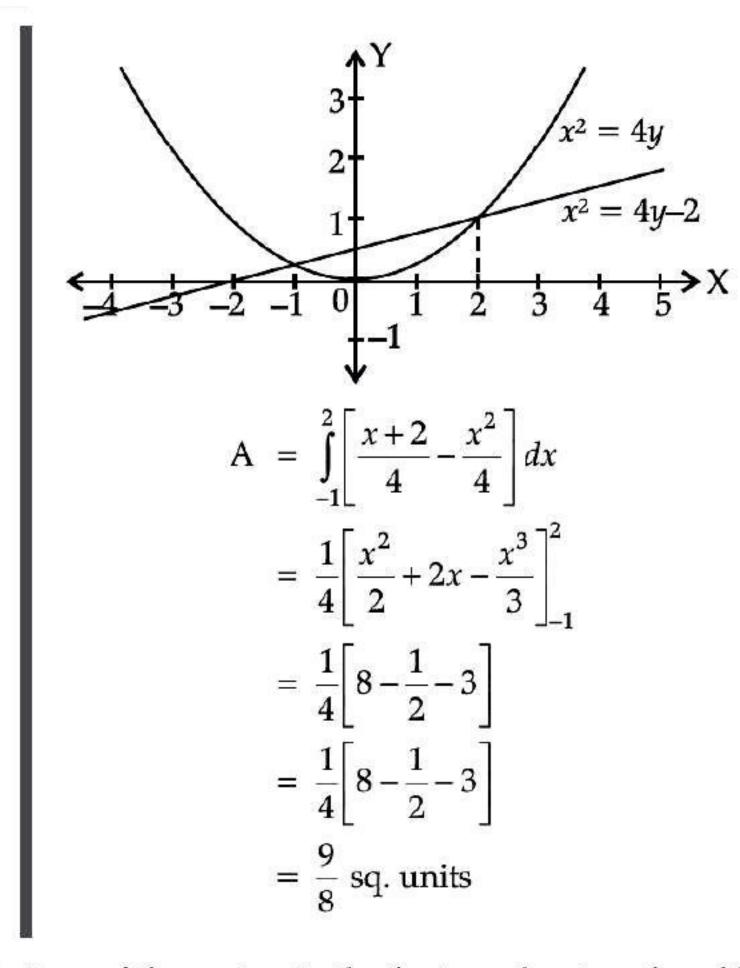
(1 Mark each)

region bounded by the curve

Q. 1. The area of the region bounded by the <i>y</i> -axis, $y = \cos x$ and $y = \sin x$, $0 \le x \le \pi/2$ is (A) $\sqrt{2}$ sq. units (B) $(\sqrt{2}+1)$ sq. units (C) $(\sqrt{2}-1)$ sq. units (D) $(2\sqrt{2}-1)$ sq. units Ans. Option (C) is correct.	$= \left[\sin \frac{\pi}{4} + \cos \frac{\pi}{4} - \sin 0 - \cos 0 \right]$ $= \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} - 1$ $= (\sqrt{2} - 1) \text{ sq. units}$
Explanation : We have $y = \cos x$ and $y = \sin x$, where $0 \le x \le \frac{\pi}{2}$. We get $\cos x = \sin x$ $\Rightarrow x = \frac{\pi}{4}$	Q. 2. The area of the region bounded by the $x^2 = 4y$ and the straight-line $x = 4y - 2$ is (A) $\frac{3}{8}$ sq. units (B) $\frac{5}{8}$ sq. units (C) $\frac{7}{8}$ sq. units (D) $\frac{9}{8}$ sq. units
From the figure, area of the shaded region, $ \begin{array}{c} $	Ans. Option (D) is correct. Explanation: $x^2 = x+2$ $x^2 - x - 2 = 0$ (x-2)(x+1) = 0 x = -1, 2

$$x = -1, 2$$

For $x = -1$, $y = \frac{1}{4}$ and for $x = 2, y = 1$
Points of intersection are $(-1, \frac{1}{4})$ and $(2, 1)$.
Graphs of parabola $x^2 = 4y$ and $x = 4y - 2$ are shown in the following figure :



From the above figure, area of the shaded region,

$$A = \int_{0}^{4} x dx + \int_{4}^{4\sqrt{2}} \sqrt{(4\sqrt{2})^{2} - x^{2}} dx$$

$$= \left[\frac{x^{2}}{2}\right]_{0}^{4} + \left[\frac{x}{2}\sqrt{(4\sqrt{2})^{2} - x^{2}} + \frac{(4\sqrt{2})^{2}}{2}\sin^{-1}\frac{x}{4\sqrt{2}}\right]_{4}^{4\sqrt{2}}$$

$$= \left[\frac{16}{2}\right] + \begin{bmatrix} 0 + 16\sin^{-1}1 - \frac{4}{2}\sqrt{(4\sqrt{2})^{2} - 16^{2}} \\ -16\sin^{-1}\frac{4}{4\sqrt{2}} \end{bmatrix}$$

$$= 8 + \left[\frac{16\pi}{2} - 2\sqrt{16} - 16\frac{\pi}{4}\right]$$

$$= 8 + [8\pi - 8 - 4\pi]$$

$$= 4\pi \text{ sq. units}$$

Q. 4. Area of the region bounded by the curve $y = \cos x$ between x = 0 and $x = \pi$ is

(A) 2 sq. units	(B) 4 sq. units
	and the second second second the second second

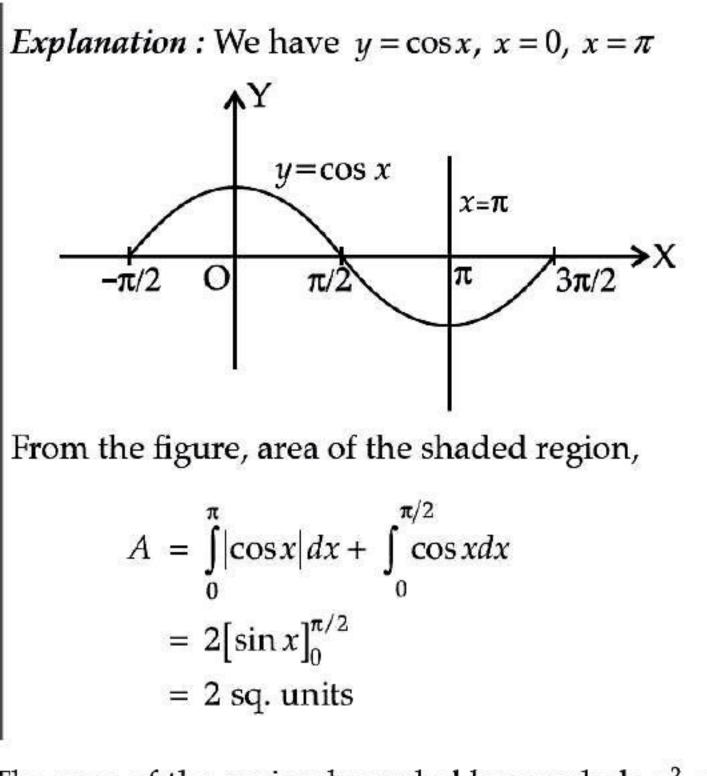
Q. 3. Area of the region in the first quadrant enclosed by the *x*-axis, the line y = x and the circle $x^2 + y^2 = 32$ is

(A) 16π sq. units (B) 4π sq. units (C) 32π sq. units (D) 24π sq. units

Ans. Option (B) is correct.

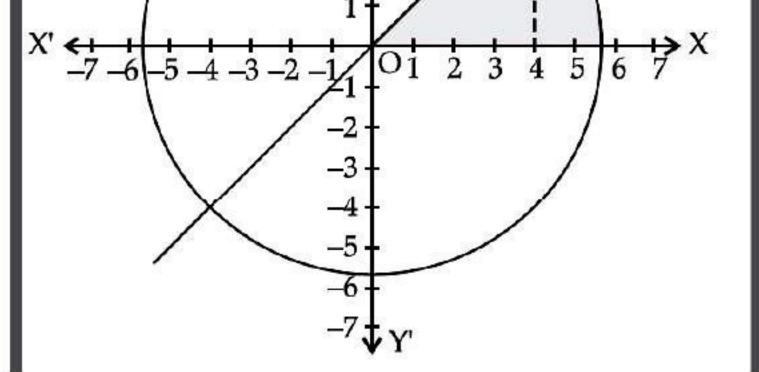
Explanation: We have y = 0, y = x and the circle $x^2 + y^2 = 32$ in the first quadrant. Solving y = x with the circle $x^2 + x^2 = 32$ $x^2 = 16$ x = 4(In the first quadrant) When x = 4, y = 4 for the point of intersection of the circle with the *x*-axis. Put y = 0 $x^2 + 0 = 32$ $x = \pm 4\sqrt{2}$ So, the circle intersects the *x*-axis at $(\pm 4\sqrt{2}, 0)$. 5 y = x3. $x^2 + y^2 = 32$ 2

(**D**) 1 sq. unit (C) 3 sq. units Ans. Option (A) is correct.

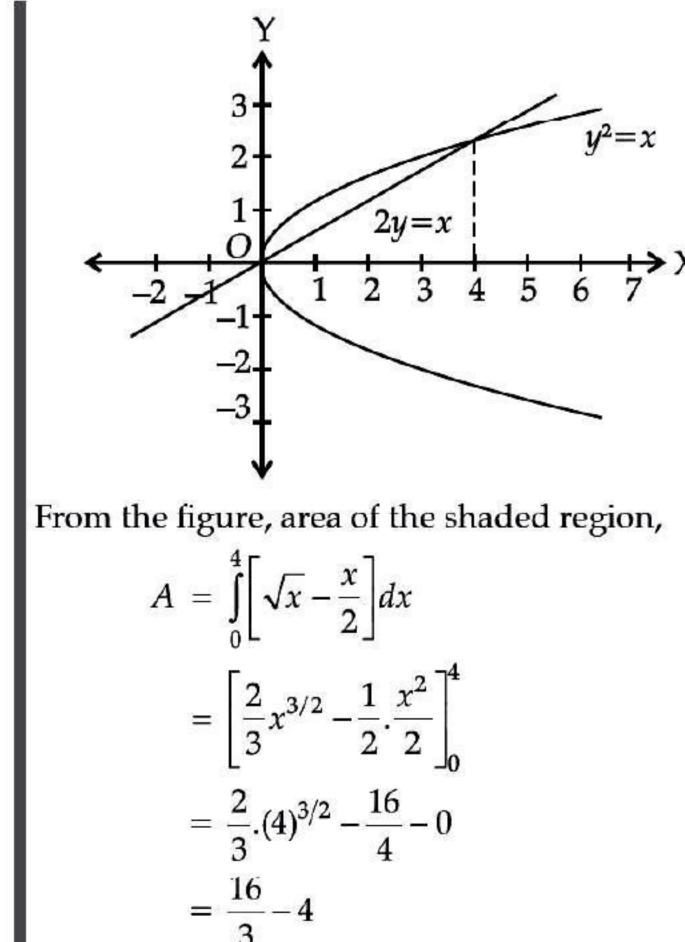


Q. 5. The area of the region bounded by parabola $y^2 = x$ and the straight line 2y = x is (A) $\frac{4}{3}$ sq. units (**B**) 1 sq. unit (C) $\frac{2}{3}$ sq. unit (D) $\frac{1}{3}$ sq. unit

Ans. Option (A) is correct.



Explanation: When $y^2 = x$ and 2y = xSolving we get $y^2 = 2y$ \Rightarrow *y* = 0, 2 and when *y* = 2, *x* = 4 So, points of intersection are (0, 0) and (4, 2). Graphs of parabola $y^2 = x$ and 2y = x are as shown in the following figure :



From the figure, area of the shaded region,

$$A = 4\int_{0}^{5} \frac{4}{5} \sqrt{5^{2} - x^{2}} dx$$

= $\frac{16}{5} \left[\frac{x}{2} \sqrt{5^{2} - x^{2}} - \frac{5^{2}}{2} \sin^{-1} \frac{x}{5} \right]_{0}^{5}$
= $\frac{16}{5} \left[0 + \frac{5^{2}}{2} \sin^{-1} 1 - 0 - 0 \right]$
= $\frac{16}{5} \cdot \frac{25}{2} \cdot \frac{\pi}{2}$
= 20π sq. units

Q.7. The area of the region bounded by the circle $x^2 + y^2 = 1$ is

(A) 2π sq. units	(B) π sq. units
(C) 3π sq. units	(D) 4π sq. units

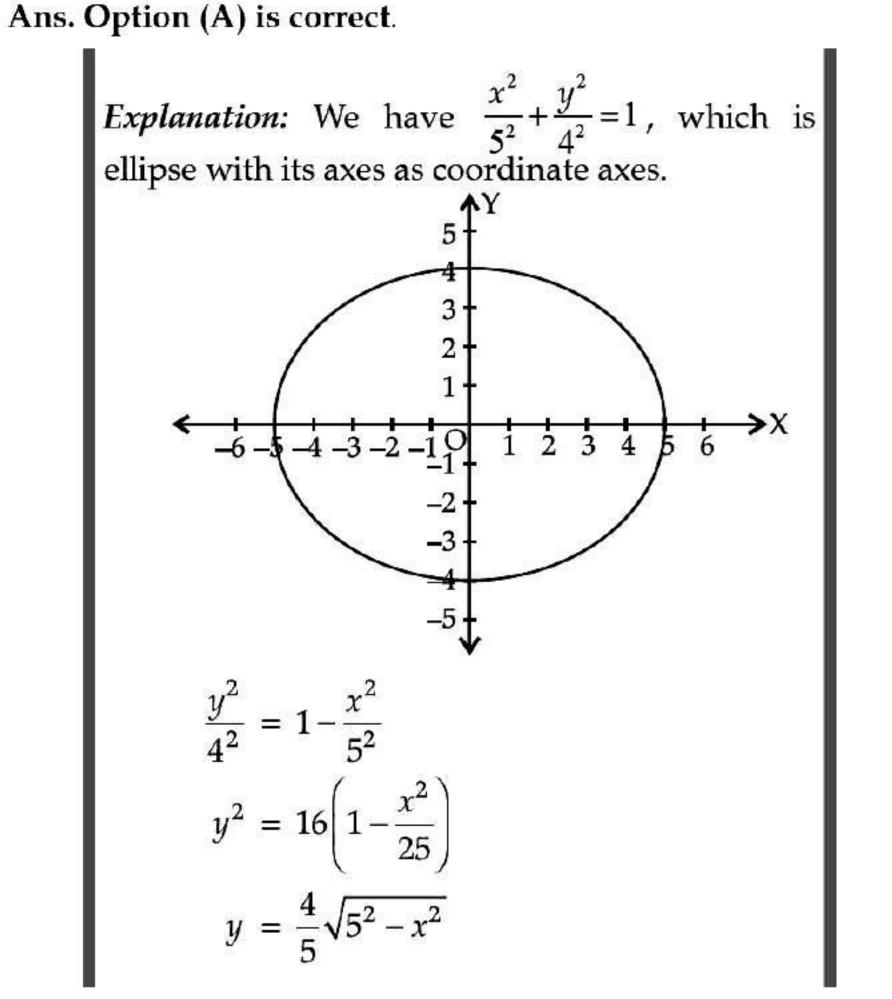
Ans. Option (B) is correct.

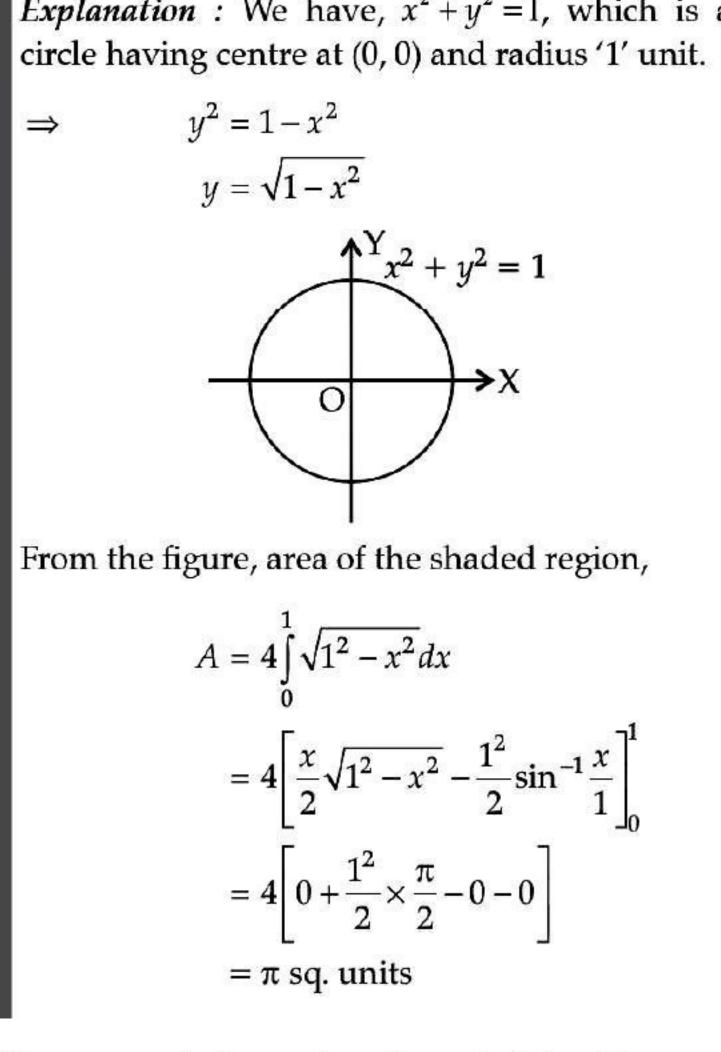
Explanation : We have, $x^2 + y^2 = 1$, which is a

$$=\frac{4}{3}$$
 sq. unit

Q. 6. The area of the region bounded by the ellipse

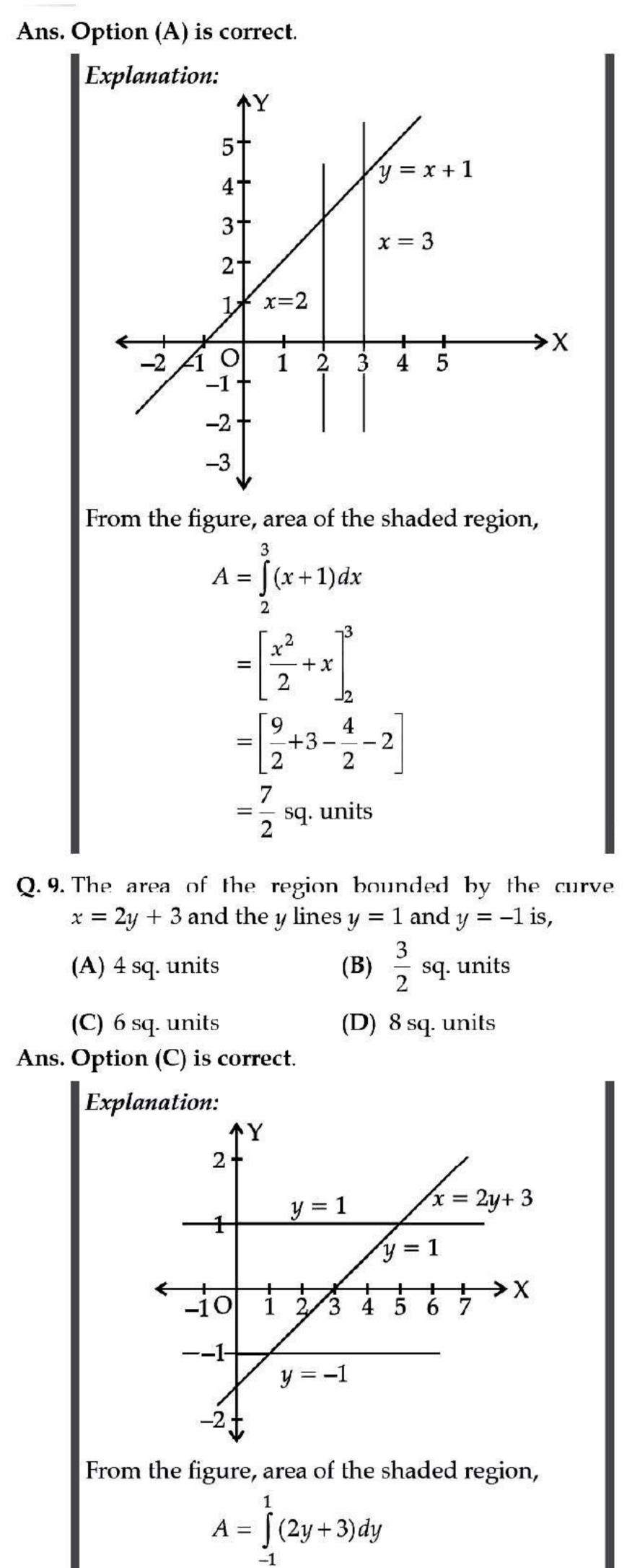
 $\frac{x^2}{25} + \frac{y^2}{16} = 1$ is (A) 20π sq. units (B) $20\pi^2$ sq. units (C) $16\pi^2$ sq. units (D) 25π sq. units





Q.8. The area of the region bounded by the curve y = x + 1 and the lines x = 2 and x = 3 is (A) $\frac{7}{2}$ sq. units (B) $\frac{9}{2}$ sq. units

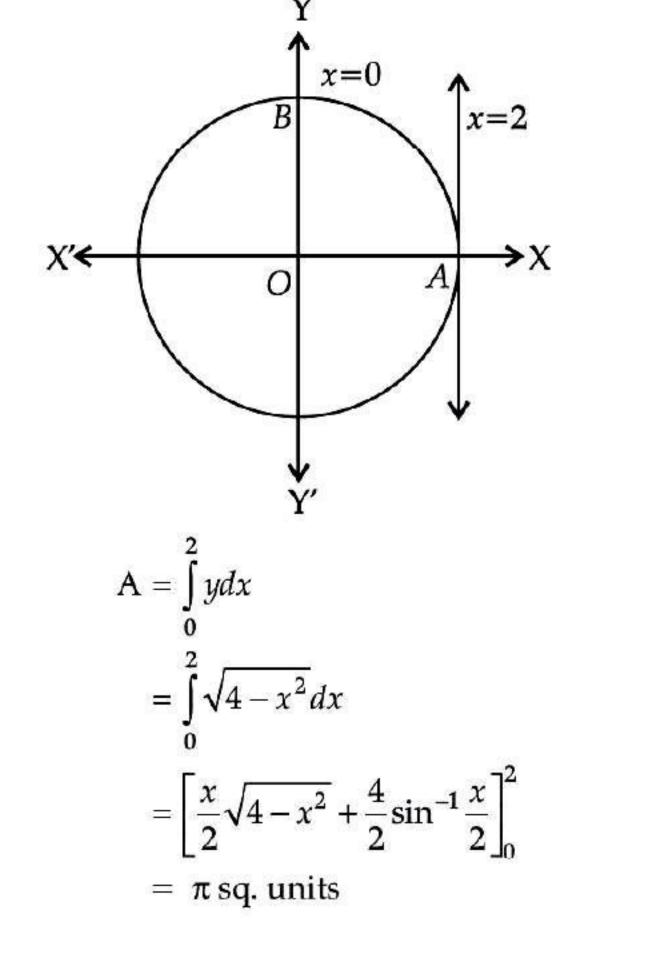
(C) $\frac{11}{2}$ sq. units (D) $\frac{13}{2}$ sq. units



(A) π	$(B) \frac{\pi}{2}$
(C) $\frac{\pi}{3}$	(D) $\frac{\pi}{4}$

Ans. Option (A) is correct.

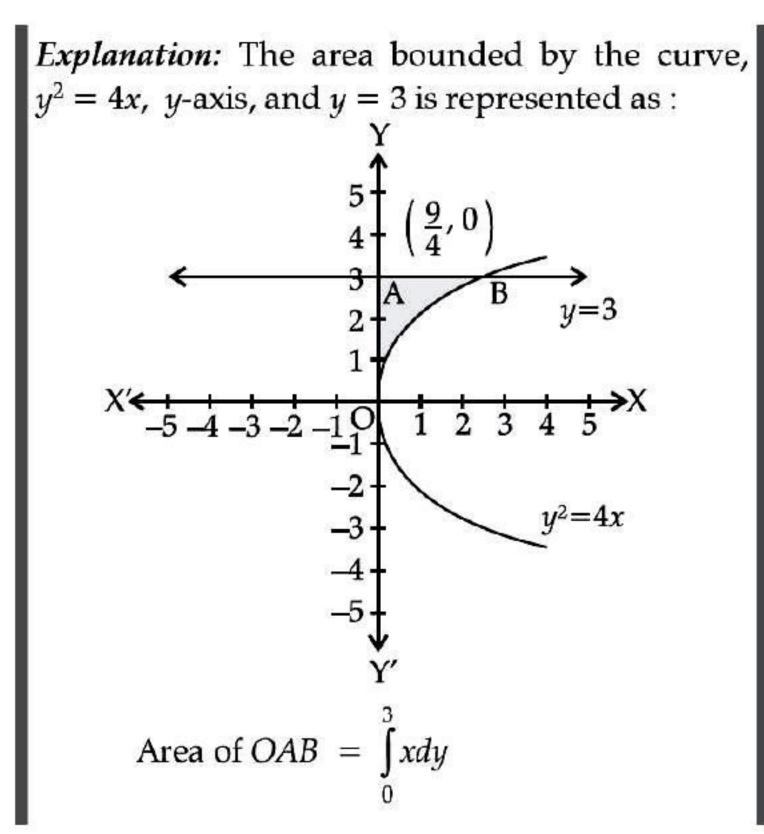
Explanation : The area bounded by the circle and the lines in the first quadrant is represented as :

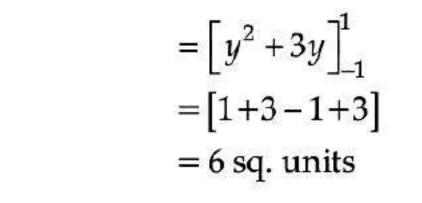


Q. 11. Area of the region bounded by the curve $y^2 = 4x$, *y*-axis and the line y = 3 is

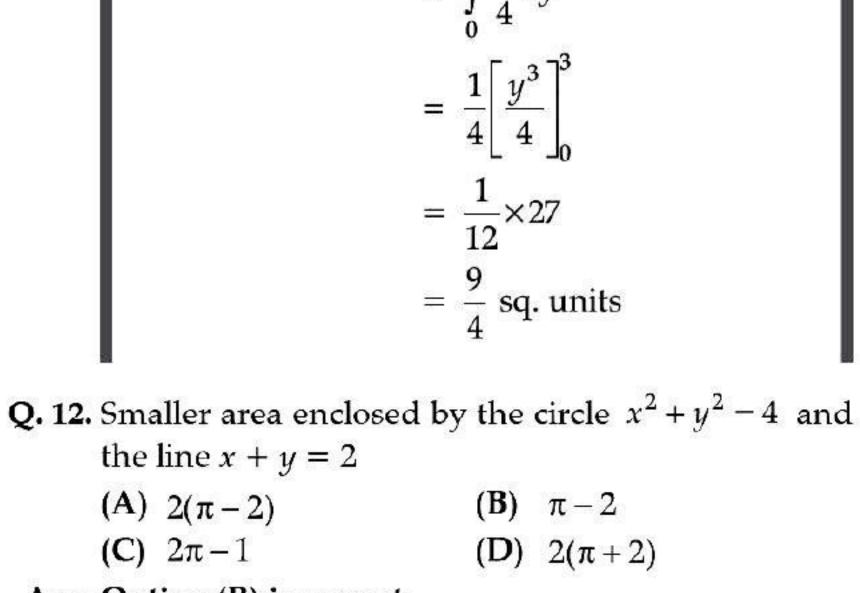
(A) 2	(B) $\frac{9}{4}$
(C) $\frac{9}{3}$	(D) $\frac{9}{2}$

Ans. Option (B) is correct.



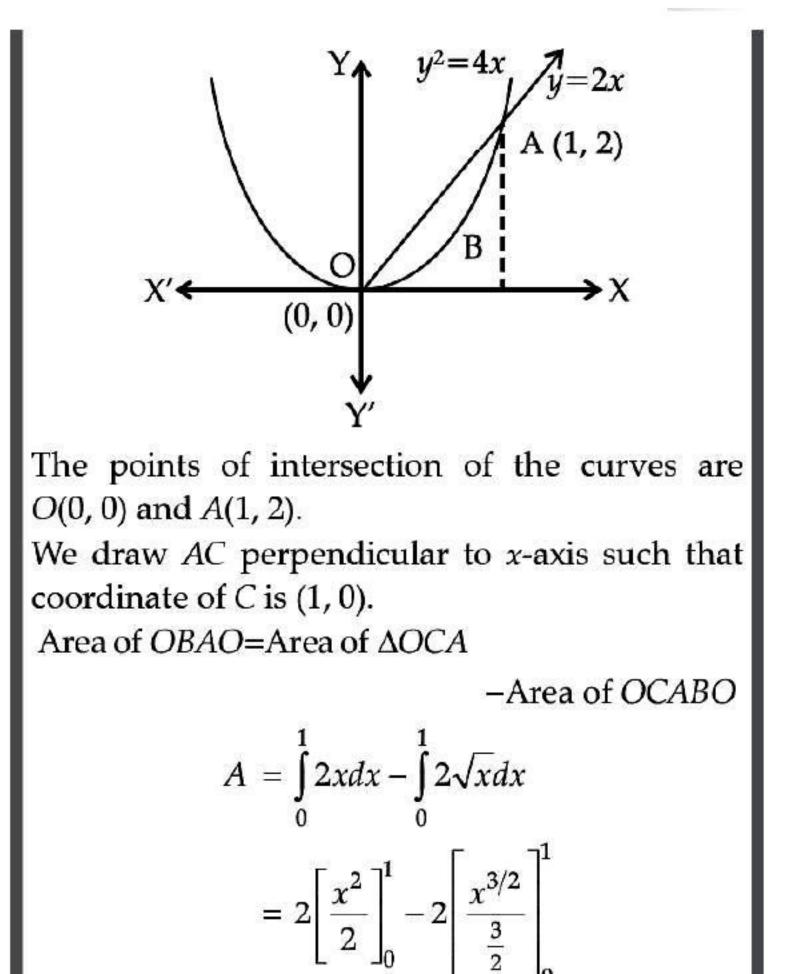


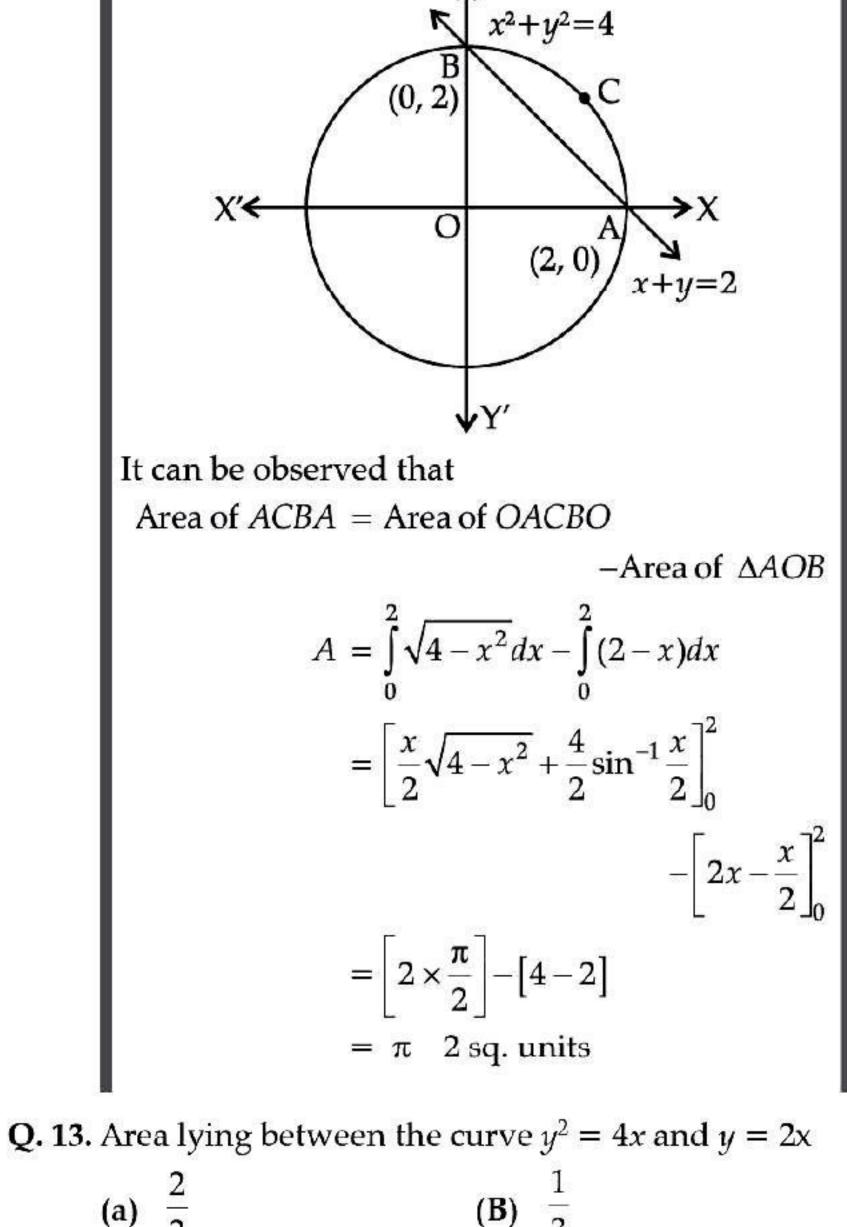
Q. 10. Area lying in the first quadrant and bounded by circle $x^2 + y^2 = 4$ and the lines x = 0 and x = 2 is

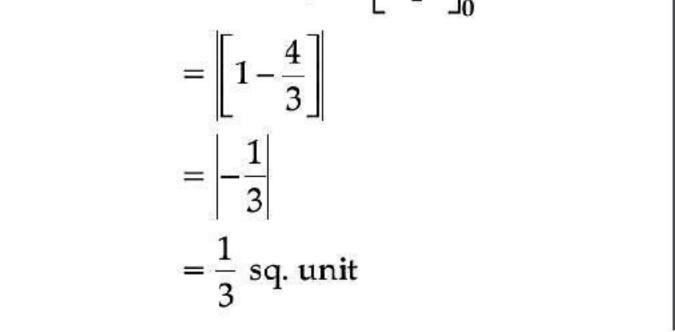


Ans. Option (B) is correct.

Explanation: The smaller area enclosed by the circle $x^2 + y^2 = 4$ and the line, x + y = 2 is represented by the shaded area ACBA as :

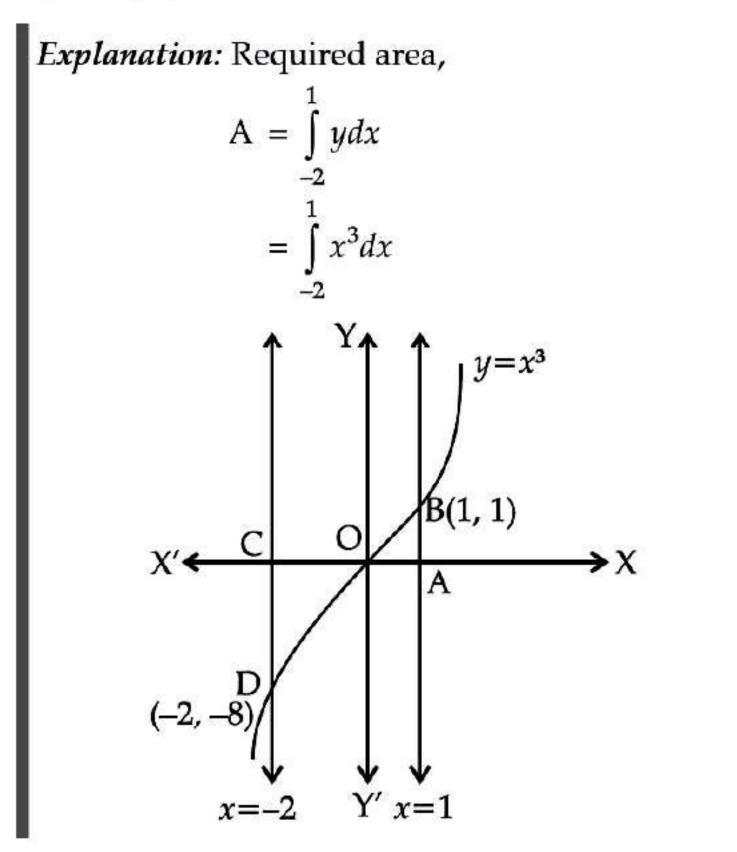






- **Q.** 14. Area bounded by the curve $y = x^3$, the *x*-axis and the ordinates x = -2 and x = 1 is
 - (A) -9 (B) $-\frac{15}{4}$ (C) $\frac{15}{4}$ (D) $\frac{17}{4}$

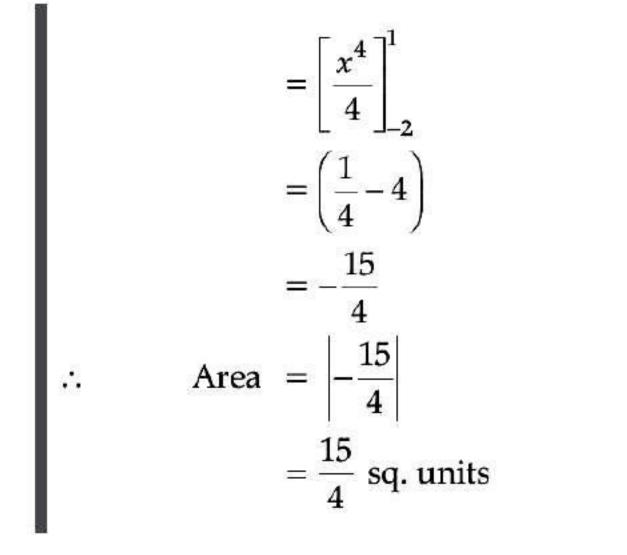
Ans. Option (C) is correct.



(C)
$$\frac{1}{4}$$
 (D) $\frac{3}{4}$

Ans. Option (B) is correct.

Explanation: The area lying between the curve $y^2 = 4x$ and y = 2x is represented by the shaded area *OBAO* as



Q. 15. The area of the circle $x^2 + y^2 = 16$ exterior to the parabola $y^2 = 6x$ is (A) $\frac{4}{3}(4\pi - \sqrt{3})$ (B) $\frac{4}{3}(4\pi + \sqrt{3})$ (C) $\frac{4}{3}(8\pi - \sqrt{3})$ (D) $\frac{4}{3}(8\pi + \sqrt{3})$ Ans. Option (C) is correct.

$$= 2\sqrt{6} \int_{0}^{2} \sqrt{x} dx + 2 \int_{2}^{4} \sqrt{16 - x^{2}} dx$$

$$= 2\sqrt{6} \times \frac{2}{3} \left[x^{3/2} \right]_{0}^{2} + 2 \left[\frac{x}{2} \sqrt{16 - x^{2}} + \frac{16}{2} \sin^{-1} \left(\frac{x}{4} \right) \right]_{2}^{4}$$

$$= \frac{4\sqrt{6}}{2} \left(2\sqrt{2} - 0 \right) + 2 \left[\left\{ 0 + 8 \sin^{-1}(1) \right\} - \left\{ 2\sqrt{3} + 8 \sin^{-1} \left(\frac{1}{2} \right) \right\} \right]$$

$$= \frac{16\sqrt{3}}{3} + 2 \left[8 \times \frac{\pi}{2} - 2\sqrt{3} - 8 \times \frac{\pi}{6} \right]$$

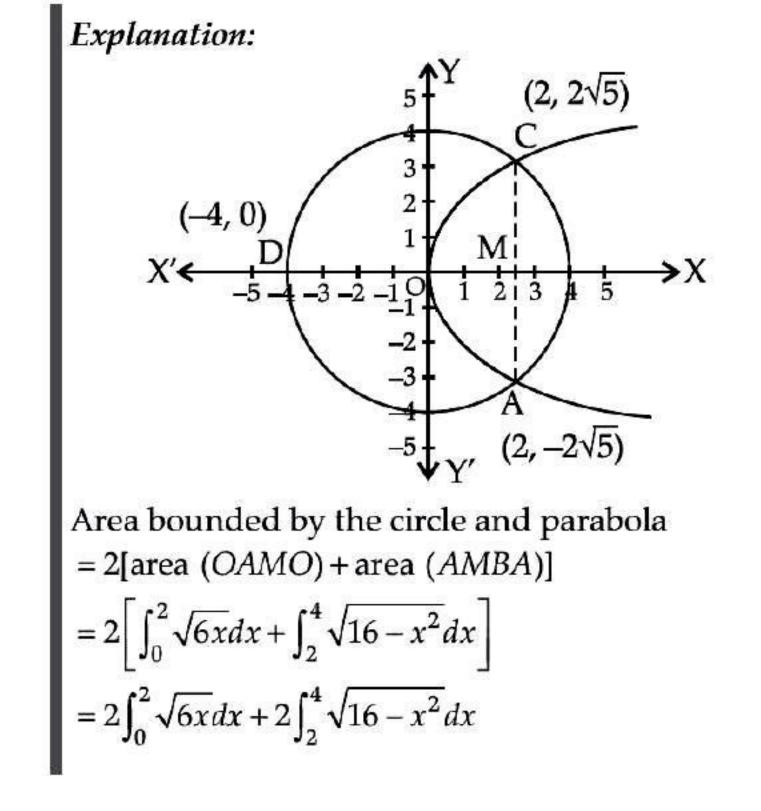
$$= \frac{16\sqrt{3}}{3} + 2 \left[4\pi - 2\sqrt{3} - \frac{4\pi}{3} \right]$$

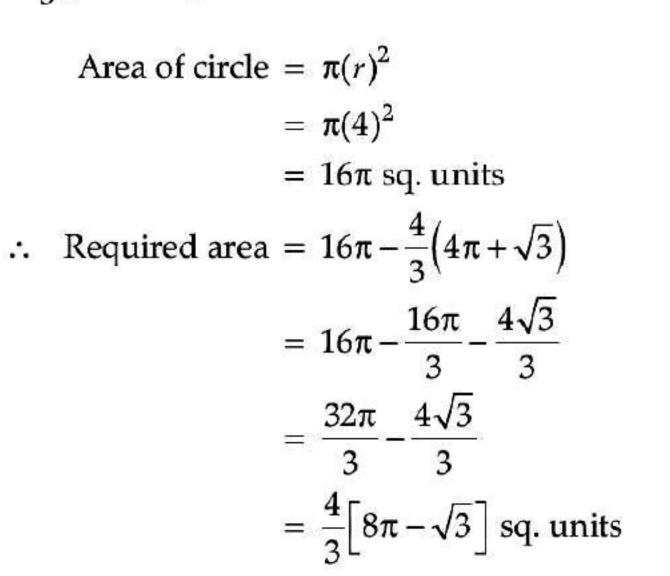
$$= \frac{16\sqrt{3}}{3} + 8\pi - 4\sqrt{3} - \frac{8\pi}{3}$$

$$= \frac{16\sqrt{3} + 24\pi - 4\sqrt{3} - 8\pi}{3}$$

$$= \frac{16\pi + 12\sqrt{3}}{3}$$

$$= \frac{4}{3} \left[4\pi + \sqrt{3} \right] \text{ sq. units}$$



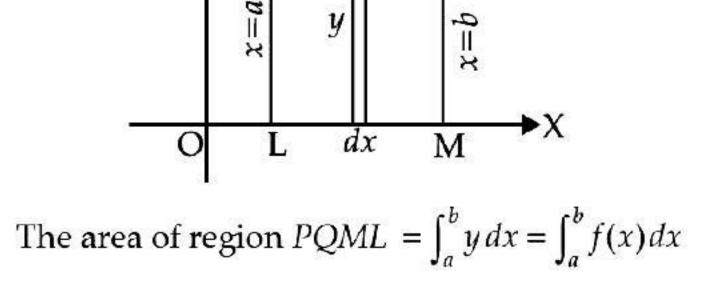


ASSERTION AND REASON BASED MCQs (1 Mark each)

Directions: In the following questions, A statement of Assertion (A) is followed by a statement of Reason (R). Mark the correct choice as

- (A) Both A and R are true and R is the correct explanation
 - of A

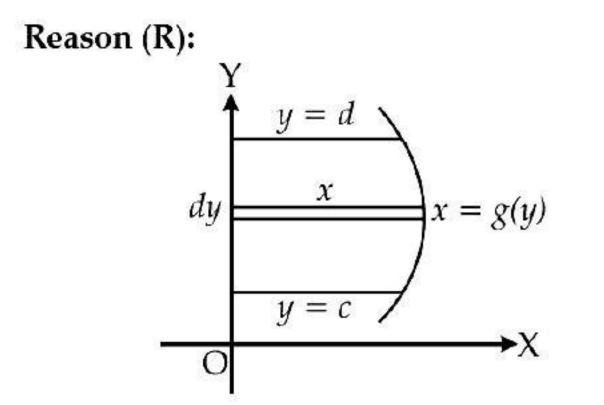
(B) Both A and R are true but R is NOT the correct explanation of A
(C) A is true but R is false
(D) A is false and R is True



y=f(x)

Get More Learning Materials Here :

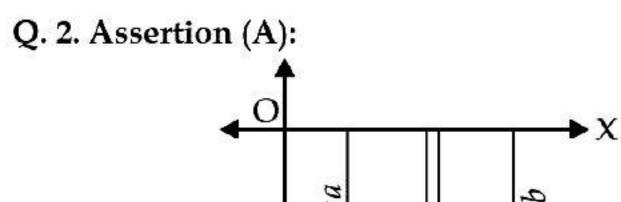
Q. 1. Assertion (A):



The area *A* of the region bounded by curve x = g(y), *y*-axis and the lines y = c and y = d is given by $A = \int_{c}^{d} x dy$

Ans. Option (B) is correct.

Explanation: Assertion (A) and Reason (R) both are individually correct.

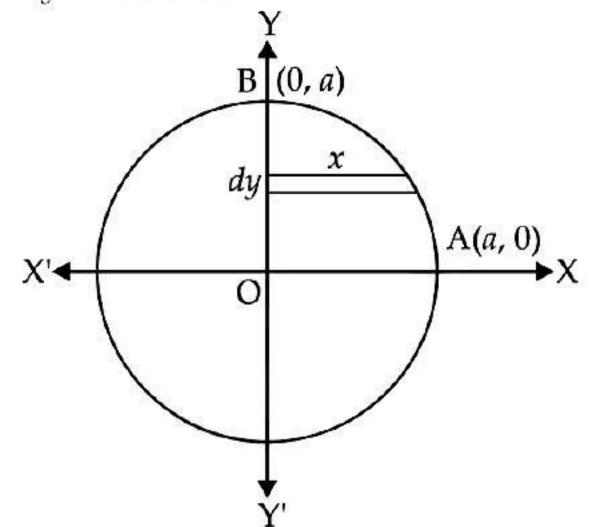


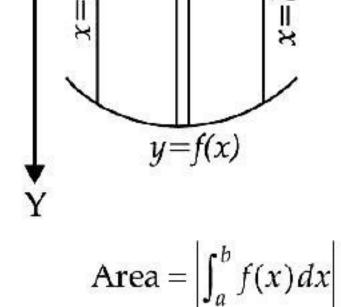
x-axis and the ordinates x = a and x = b is given by Area = $|A_1| + |A_2|$

Ans. Option (A) is correct.

Explanation: Assertion (A) and Reason (R) both are correct, Reason (R) is the correct explanation of Assertion (A).

Q. 4. Assertion (A): The area enclosed by the circle $x^2 + y^2 = a^2$ is πa^2 .





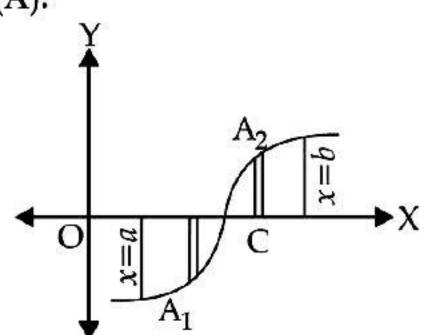
Reason (R): If the curve under consideration lies below *x*-axis, then f(x) < 0 from x = a to x = b, the area bounded by the curve y = f(x) and the ordinates x = a, x = b and *x*-axis is negative. But, if the numerical value of the area is to be taken into consideration, then

Area –
$$\left|\int_{a}^{b} f(x) dx\right|$$

Ans. Option (A) is correct.

Explanation: Assertion (A) and Reason (R) both are correct, Reason (R) is the correct explanation of Assertion (A).

Q. 3. Assertion (A):



Reason (R): The area enclosed by the circle

$$= 4 \int_{0}^{a} x \, dy$$

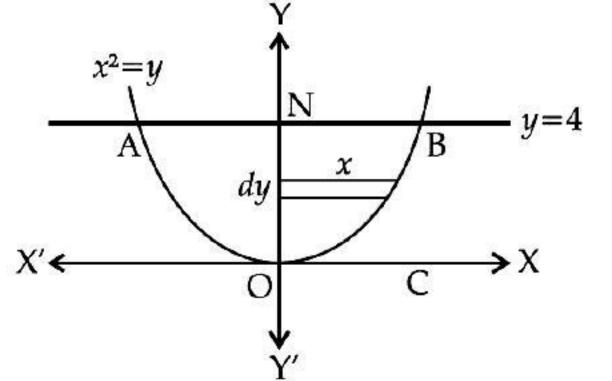
= $4 \int_{0}^{a} \sqrt{a^{2} - y^{2}} \, dy$
= $4 \left[\frac{y}{2} \sqrt{a^{2} - y^{2}} + \frac{a^{2}}{2} \sin^{-1} \frac{y}{a} \right]_{0}^{a}$
= $4 \left[\left(\frac{a}{2} \times 0 + \frac{a^{2}}{2} \sin^{-1} 1 \right) - 0 \right]$
= $4 \frac{a^{2}}{2} \frac{\pi}{2}$
= πa^{2}

Ans. Option (A) is correct.

Explanation: Assertion (A) and Reason (R) both are correct, Reason (R) is the correct explanation of Assertion (A).

Q. 5. Assertion (A): The area of the region bounded by

the curve $y = x^2$ and the line y = 4 is $\frac{3}{32}$. Reason (R):



Area = $|A_1| + |A_2|$ **Reason (R):** It may happen that some portion of the curve is above *x*-axis and some portion is below *x*-axis as shown in the figure. Let A_1 be the area below *x*-axis and A_2 be the area above the *x*-axis. Therefore, area bounded by the curve y = f(x),

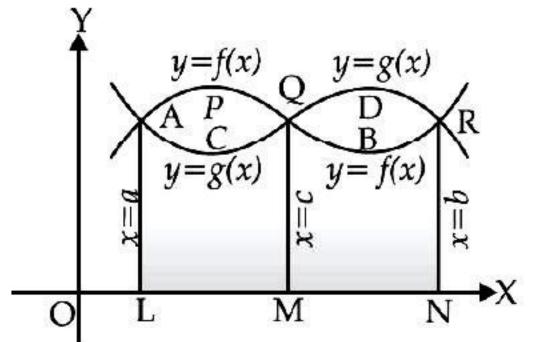
Since the given curve represented by the equation $y = x^2$ is a parabola symmetrical about *y*-axis only, therefore, from figure, the required area of the region *AOBA* is given by

$$A = 2\int_0^4 x \, dy$$
$$= 2\int_0^4 \sqrt{y} \, dy$$
$$= 2 \times \frac{2}{3} \left[y^{3/2} \right]_0^4$$
$$= \frac{4}{3} \times 8$$
$$= \frac{32}{3}$$

Ans. Option (D) is correct.

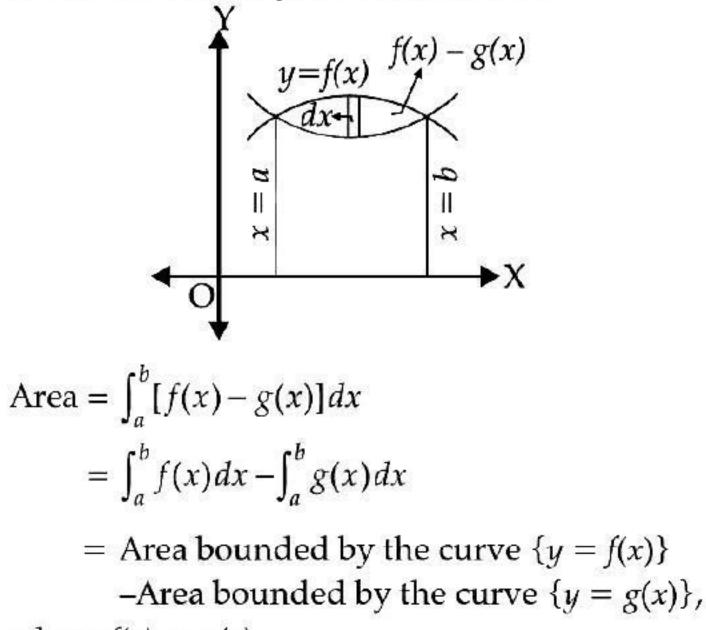
Explanation: Assertion (A) is wrong. Reason (R) is the correct solution of Assertion (A).

Q. 6. Assertion (A): If the two curves y = f(x) and y = g(x) intersect at x = a, x = c and x = b, such that a < c < b.



of the regions bounded by the curve = Area of region PACQP + Area of region QDRBQ. = $\int_{a}^{c} |f(x) - g(x)| dx + \int_{c}^{b} |g(x) - f(x)| dx$.

Reason (R): Let the two curves by y = f(x) and y = g(x), as shown in the figure. Suppose these curves intersect at f(x) with width dx.



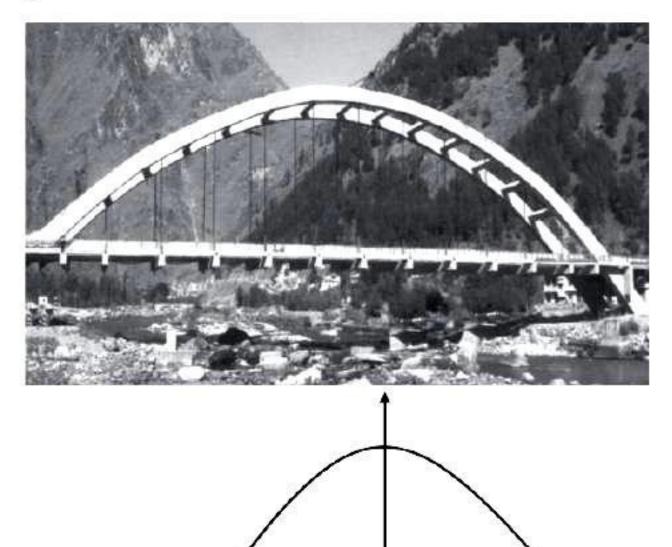
If f(x) > g(x) in [a, c] and $g(x) \le f(x)$ in [c, b], then Area

where f(x) > g(x). Ans. Option (B) is correct.

Explanation: Assertion (A) and Reason (R) both are individually correct.

Attempt any four sub-parts from each question. Each sub-part carries 1 mark.

I. Read the following text and answer the following questions on the basis of the same:



(A)
$$x^2 = 250y$$

(B) $x^2 = -250y$
(C) $y^2 = 250x$
(D) $y^2 = 250y$

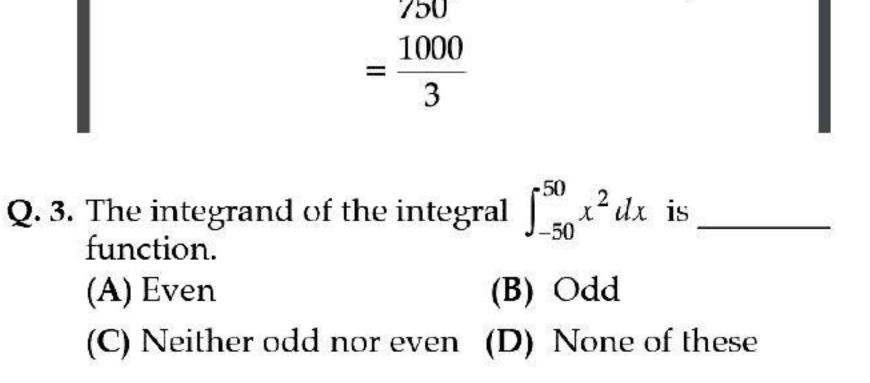
Ans. Option (C) is correct.

Q. 2. The value of the integral $\int_{-50}^{50} \frac{x^2}{250}$ is (A) $\frac{1000}{3}$ (B) $\frac{250}{3}$ (C) 1200 (D) 0

Ans. Option (A) is correct.

Explanation: $\int_{-50}^{50} \frac{x^2}{250} = \frac{1}{250} \left[\frac{x^3}{3} \right]_{-50}^{50}$ $= \frac{1}{250} \times \frac{1}{3} \left[(50)^3 - (-50)^3 \right]$ $= \frac{1}{750} [125000 + 125000]$

The bridge connects two hills 100 feet apart. The arch on the bridge is in a parabolic form. The highest point on the bridge is 10 feet above the road at the middle of the bridge as seen in the figure. [CBSE QB-2021] Q. 1. The equation of the parabola designed on the bridge is



Ans. Option (A) is correct.

Explanation: $f(x) = x^2$ $f(-x) = x^2$ $\therefore f(x)$ is even function.

Q. 4. The area formed by the curve $x^2 = 250y$, x-axis, y = 0 and y = 10 is

(A)
$$\frac{1000\sqrt{2}}{3}$$
 (B) $\frac{4}{3}$
(C) $\frac{1000}{3}$ (D) 0

Ans. Option (C) is correct.

Explanation: $x^{2} = 250y$ $y = \frac{1}{250}x^{2}$ x = 0at y = 0

Q.1. The equation of the circle is _ (A) $x^2 + y^2 = 4\sqrt{2}$ (B) $x^2 + y^2 = 16$ (C) $x^2 + y^2 = 32$ (D) $(x - 4\sqrt{2})^2 + 0$ Ans. Option (C) is correct. Explanation: Centre = (0, 0), $r = 4\sqrt{2}$ Equation of circle is $x^{2} + y^{2} = (4\sqrt{2})^{2}$ $x^{2} + y^{2} = 32$ **Q.2.** The co-ordinates of *B* are _____ **(B)** (2, 2) (A) (1, 1) (C) $(4\sqrt{2}, 4\sqrt{2})$ (D) (4, 4)Ans. Option (D) is correct. Explanation: ...(i)

Solving (i) and (ii),

...(11)

at
$$y = 10$$
 $x = 50, -50$
 \therefore Area formed by curve

$$= \int_{-50}^{50} \frac{1}{250} x^2 dx$$

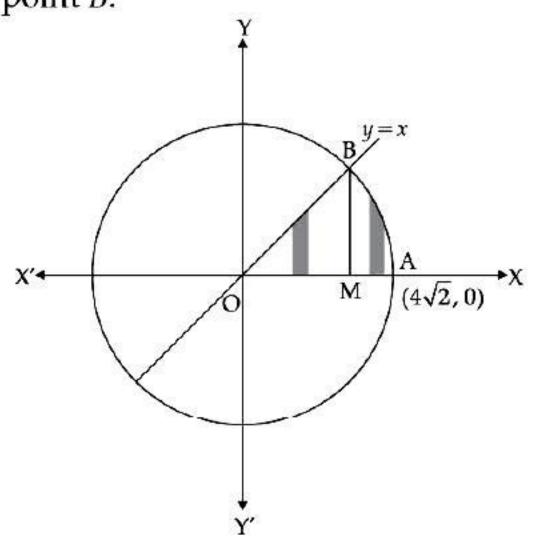
$$= \frac{1}{250} \times \frac{1}{3} [x^3]_0^{50}$$

$$= \frac{1}{750} [250,000]$$

$$= \frac{1000}{3} \text{ sq. units}$$
Q. 5. The area formed between $x^2 = 250y$, y-axis, $y = 2$
and $y = 4$ is
(A) $\frac{1000}{3}$ (B) 0
(C) $\frac{1000\sqrt{2}}{3}$ (D) None of these
Ans. Option (D) is correct.

II. Read the following text and answer the following questions on the basis of the same: In the figure O(0, 0) is the centre of the circle. The

line y = x meets the circle in the first quadrant at the point *B*.



$$\begin{array}{l} \Rightarrow \qquad x^2 + y^2 = 32 \\ \Rightarrow \qquad x^2 = 16 \\ \Rightarrow \qquad x = 4, \\ \Rightarrow \qquad y = x = 4 \\ \therefore \qquad B = (4, 4) \end{array}$$

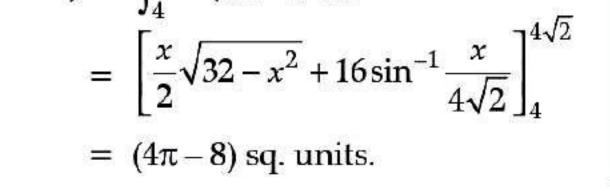
$$\begin{array}{l} Q.3. \text{ Area of } \Delta OBM \text{ is } _ _ \ \text{sq. units} \\ (A) 8 \qquad (B) 16 \\ (C) 32 \qquad (D) 32\pi \end{array}$$

Ans. Option (A) is correct.

Explanation: Ar ($\triangle OBM$) = $\int_0^4 x dx$ = 8 sq. units **Q.4.** Ar (BAMB) = _____ sq. units (A) 32π **(B)** 4π (D) $4\pi - 8$ (C) 8

Ans. Option (D) is correct.

Explanation:
Ar (BAMB) =
$$\int_{4}^{4\sqrt{2}} \sqrt{32 - x^2} dx$$



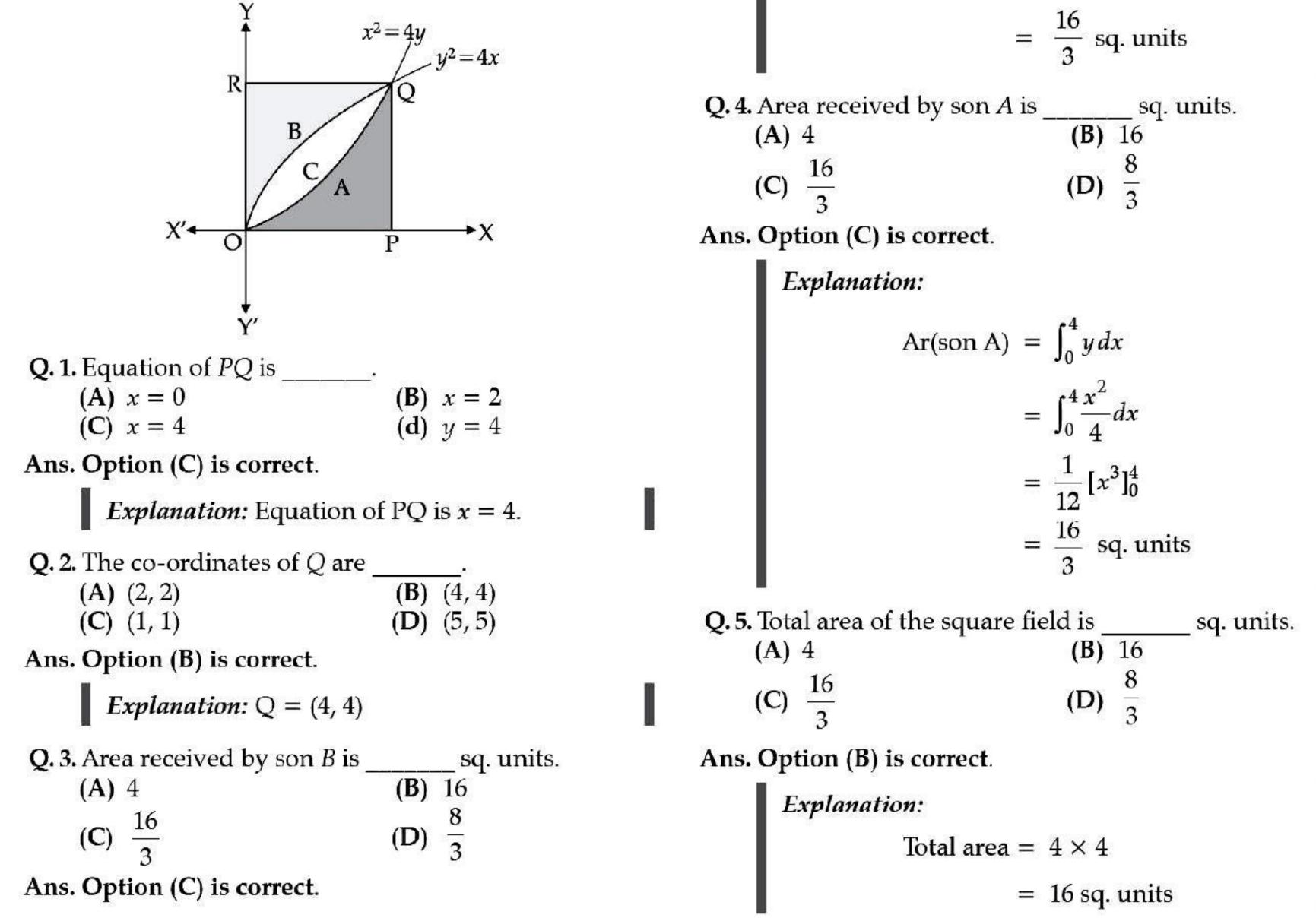
Q . 5 . Area of the shaded	region is sq. units.
(A) 32π	(B) 4π
(C) 8	(D) $4\pi - 8$

Ans. Option (B) is correct.

Explanation: Area of shaded region $= Ar (\Delta OBM) + Ar (BAMB)$ $= 8 + 4\pi - 8$ $= 4\pi \text{ sq. units}$

III. Read the following text and answer the following questions on the basis of the same:

A farmer has a square plot of land. Three of its boundaries are x = 0, y = 0 and y = 4. He wants to divide this land among his three sons A, B and C as shown in figure.



Explanation:

